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Abstract—Instant search is an information-retrieval  in which a system finds answers to a query instantly while a user types in 

keywords character-by-character. Fuzzy search further improves user search experiences by finding relevant answers with keywords 

similar to query keywords. A main computational challenge in this  the high-speed requirement, i.e., each query needs to be answered 

within milliseconds to achieve an instant response and a high query throughput. At the same time, we also need good ranking 

functions that consider the proximity of keywords to compute relevance scores. 

In this paper, we study how to integrate proximity information into ranking in instant-fuzzy search while achieving efficient time and 

space complexities. A naıve solution is computing all answers then ranking them, but it cannot meet this high-speed requirement on 

large data sets when there are too many answers, so there are studies of early-termination techniques to efficiently compute relevant 

answers. To overcome the space and time limitations of these solutions, we propose an approach that focuses on common phrases in 

the data and queries, assuming records with these phrases are ranked higher. We study how to index these phrases and develop an 

incremental-computation algorithm for efficiently segmenting a query into phrases and computing relevant answers. 

I. INTRODUCTION 

Instant Search: As an emerging information-access it returns the answers immediately based on a partial query a user has typed in. 

Many users prefer the experience of seeing the search results instantly and formulating their queries accordingly instead of being left 

in the dark until they hit the search button 

Fuzzy Search: Users often make typographical mistakes in their search queries. Meanwhile, small keyboards on mobile devices, lack 

of caution, or limited knowledge about the data can also cause mistakes. In this case we cannot find relevant answers by finding 

records with keywords matching the query exactly. This problem can be solved by supporting fuzzy search, in which we find answers 

with keywords similar to the query keywords. Combining fuzzy search with instant search can provide an even better search 

experiences, especially for mobile-phone users, who often have the ―fat fingers‖ problem, i.e., each keystroke or tap is time 

consuming and error prone. 

Finding Relevant Answers within Time Limit It is known that to achieve an instant speed for humans (i.e., users do not feel delay), 

from the time a user types in a character to the time the results are shown on the device, the total time should be within 100 

milliseconds [2]. The time includes the network delay, the time on the search server, and the time of running code on the device of the 

user (such as JavaScript in browsers). Thus the amount of time the server can spend is even less. At the same time, compared to 

traditional search systems, instant search can result in more queries on the server since each keystroke can invoke a query, thus it 

requires a higher speed of the search process to meet the requirement of a high query throughput. What makes the computation even 

more challenging is that the server also needs to retrieve high-quality answers to a query given a limited amount of time to meet the 

information need of the user. 

Problem Statement: In this paper, we study the following problem: how to integrate proximity information into ranking in instant-

fuzzy search to compute relevant answers efficiently? The proximity of matching keywords in answers is an important metric to 

determine the relevance of the answers. Search queries typically contain correlated keywords, and answers that have these keywords 

together are more likely what the user is looking for [3]. 

Our Contributions: We study various solutions to this important problem and show the insights on the tradeoffs of space, time, and 

answer quality. One approach is to first find all the answers, compute the score of each answer based on a ranking function, sort them 

using the score, and return the top results. However, enumerating all these answers can be computationally expensive when these 

answers are too many. This case is more likely to happen compared to a traditional search system since query keywords in instant 

search are treated as prefixes and can have many completions. In addition, fuzzy search makes the situation even more challenging 
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since there can be many keywords with a prefix similar to a query prefix. As a consequence, the number of answers in instant fuzzy 

search is much larger than that in traditional search. 

An efficient way to address the problem is to use early termination techniques that allow the engine to find top answers without 

generating all the answers of the query [4]. The main idea is to traverse the inverted index of the data following a certain order, and 

stop the traversal once we are sure that the most relevant results are among those records we have visited. The traversal order of the 

inverted index is critical to be able terminate the traversal sooner. However, using a proximity aware ranking in early termination is 

challenging, because the document order in the inverted index is typically based on individual keywords. At the same time, proximity 

information is between different keywords and does not depend on the order of an inverted list. 

There are studies on building an additional index for each term pair that appears close to each other in the data, or for phrases [5], [6], 

[7]. However, building an index for the term pairs will consume a significant amount of space. For instance, the approach in [5] 

reported an index of 1.3 TB for a collection of 25 million documents, and reduced the size to 343.5 GB by pruning the lists 

horizontally. In addition, these studies focus on two-keyword queries only, and do not consider queries with more keywords. 

Studies show that users often include entities such as people names, companies, and locations in their queries [8]. These entities can 

contain multiple keywords, and the user wants these keywords to appear in the answers as they are, i.e., the keywords are adjacent and 

in the same order in the answers as in the query. Users sometimes enter keywords enclosed by quotation marks to express that they 

want those keywords to be treated as phrases [3]. Based on this observation, we propose a technique that focuses on the important case 

where we rank highly those answers containing the query keywords as they are, in addition to adapting existing solutions to instant-

fuzzy search. To overcome the known limitations of existing solutions, we propose an approach that indexes additional common 

phrases in addition to indexing single terms. This method can not only avoid the space overhead of indexing all the term pairs or 

phrases, but also improve ranking significantly by efficiently finding relevant answers that contain these common phrases. To find 

relevant answers, we identify the indexed phrases in the query, then access their inverted lists before accessing single-keyword lists. If 

the query has different ways to be segmented into phrases, we consider all these segmentations and rank them. Each segmentation 

corresponds to a unique index-access strategy to execute the query. We execute the ranked segmentations one by one until we 

compute the most relevant answers or enough time is spent. We focus on a main challenge in this approach, which is how to do 

incremental computation to answer a query so that we do not need to compute the results from scratch for each keystroke.  

A. Related Work 

Auto-Completion: It system suggests several possible queries the user may type in next. There have been many studies on predicting 

queries (e.g., [9], [10]). Many systems do prediction by treating a query with multiple keywords as a single prefix string. Therefore, if 

a related suggestion has the query keywords but not consecutively, then this suggestion cannot be found. 

Instant Search: Many recent studies have been focused on instant search, also known as type-ahead search. The studies in [11], [12], 

[13] proposed indexing and query techniques to support instant search. The studies in [14], [15] presented triebased techniques to 

tackle this problem. Li et al. [16] studied instant search on relational data modeled as a graph. 

Fuzzy Search: The studies on fuzzy search can be classified into two categories, gram-based approaches and trie-based approaches. 

In the former approach, sub-strings of the data are used for fuzzy string matching [17], [18], [19], [20]. The second class of 

approaches index the keywords as a trie, and rely on a traversal on the trie to find similar keywords [14] , [15]. This approach is 

especially suitable for instant and fuzzy search [14] since each query is a prefix and trie can support incremental computation 

efficiently. 

Early Termination: Early-termination techniques have been studied extensively to support top-k queries efficiently [21], [22], [23], 

[5], [6], [7]. Li et al. [4] adopted existing top-k algorithms to do instant-fuzzy search. Most of these studies reorganize an inverted 

index to evaluate more relevant documents first. Persin et al. [23] proposed using inverted lists sorted by decreasing document 

frequency. Zhang et al. [22] studied the effect of term-independent features in index reorganization. 

Proximity Ranking: Recent studies show proximity is highly correlated with document relevancy, and proximity aware ranking 

improves the precision of top results significantly [24], [25]. However, there are only a few studies that improve the query efficiency 

of proximity-aware search by using early-termination techniques [26], [5], [6], [7]. Zhu et al. [26] exploited document structure to 
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build a multi-tiered index to terminate the search process without processing all the tiers. The techniques proposed in [5], [6] create an 

additional inverted index for all term pairs, resulting in a large space. To reduce the index size, Zhu et al. [7] proposed to build a 

compact phrase index for a subset of the phrases. However, both [6] and [7] studied the problem for two-keyword queries only. 

II. PRELIMINARIES 

Data: Let R = {r1,r2,...,rn} be a set of records with text attributes, such as the tuples in a relational table or a collection of documents. 

Let D be the dictionary that includes all the distinct words of R. Table I shows an example data set of medical publication records. 

Each record has text attributes such as title and authors. 

Query: A query q is a string that contains a list of keywords hw1,w2,...,wli, separated by space. In an instant-search system, a query is 

submitted for each keystroke of a user. When a user types in a string character by character, each query is constructed by appending 

one character at the end of the previous query. The last keyword in the query represents the word currently being typed, and is treated 

as prefix, while the first l−1 keywords hw1,w2,...,wl−1i are complete keywords. (Our techniques can be extended to the case where each 

keyword in the query is treated as a prefix.) For instance, when a user types in ―brain tumor‖ character by character, the system 

receives the following queries one by one: q1 = hbi, q2 = hbri, ..., q10 = hbrain,tumoi, q11 = hbrain,tumori. 

Answers: A record r from the data set R is an answer to the query q if it satisfies the following conditions: (1) for 

1 ≤ i ≤ l − 1, it has a word similar to wi, and (2) it has a keyword with a prefix similar to wl. The meaning of ―similar to‖ will be 

explained shortly. For instance, r1, r3, and r4 are answers to q = hheart, surgei, because all of them contain the keyword ―heart‖. In 

addition, they have words ―surgery‖, ―surgeons‖, and ―surgery‖, respectively, each of which has a prefix similar to ―surge‖. Record r6 

is also an answer since it has an author named ―hart‖ similar to the keyword ―heart‖, and also contains ―surgery‖ with a prefix ―surge‖ 

matching the last keyword in the query. 

The similarity between two keywords can be measured using various metrics such as edit distance.The edit distance between two 

strings is the minimum number of single-character operations (insertion, deletion, and substitution) to transform one string to the 

other. For example, the edit distance between the keywords ―Kristina‖ and ―Christina‖ is 2, because the former can be transformed to 

the latter by substituting the character ―K‖ with ―C‖, and inserting the character ―h‖ after that. Let ed(wi,p) be the edit distance 

between a query keyword wi and a prefix p from a record, and δ be a threshold. We say p is similar to wi if ed(wi,p) ≤ δ. Our techniques 

can be extended to other variants of the edit distance function, such as a function that allows a swap operation between two characters, 

a function that uses different costs for different edit operations, and a function that considers a normalized threshold based on the 

string lengths. 

Ranking: Each answer to a query is ranked based on its relevance to the query, which is defined based on various pieces of 

information such as the frequencies of query keywords in the record, and co-occurrence of some query keywords as a phrase in the 

record. Domain-specific features can also play an important role in ranking. For example, for a publication, its number of citations is a 

good indicator of its impact, and can be used as a signal in ranking. In this paper, we mainly focus on the effect of phrase matching in 

ranking. For example, for the query q = hheart,surgeryi, record r1 in Table I containing the phrase ―heart surgery‖ is more relevant 

than the record r4 containing the keywords ―heart‖ and ―surgery‖ separately. 

Basic Indexing: As the techniques described in Ji et al. [14] that combines fuzzy and instant search, we use three indexes to answer 

queries efficiently, a trie, an inverted index, and a forward index. In particular, we build a trie for the terms in the dictionary D. Each 

path from the root to a leaf node in the trie corresponds to a unique term in D. Each leaf node stores an inverted list of its term. We 

also build a forward index, which includes a forward list that contains encoded integers of the terms for each record. We can use this 

index to verify if a record contains a keyword matching a prefix condition. 

Top-k Query Answering: Given a positive integer k, we compute the k most relevant answers to a query. One way to compute these 

results is to first find all the results matching the query conditions, then rank them based on their score. An alternative solution is to 
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utilize certain properties of the ranking function, and compute the k most relevant results using early termination techniques without 

computing all the results. 

III. BASIC ALGORITHMS FOR TOP-k QUERIES 

 

A. Computing All Answers 

A naive solution is to first compute all the answers matching the keywords as follows. For each query keyword, we find the 

documents containing a similar keyword by computing the union of the inverted lists of these similar keywords. For the last query 

keyword, we consider the union of the inverted lists for the completions of each prefix similar to it. We intersect these union lists to 

find all the candidate answers. Then we compute the score of each answer using a ranking function, sort them based on the score, and 

return the top-k answers. 

A main advantage of this approach is that it supports all kinds of ranking functions. An example ranking function is a  

linear weighted sum of content-based relevancy score and proximity score that consider the similarity of each matching keyword. For 

example, we can use a variant of the scoring model proposed by Buttcher¨ et al. [27], which can be enhanced by considering similarity 

based on edit distance. This ranking function uses Okapi BM25F [28] as content-based relevancy score, and computes the proximity 

score between each pair of adjacent query term occurrences as inversely proportional to the square of their distance. We can adapt this 

ranking function by multiplying each term-related computation with a weight based on the similarity between the matching term and 

its corresponding query keyword. 

A main disadvantage of this approach is that its performance can be low if there are many results matching the query keywords, which 

may take a lot of time to compute, rank, and sort. Thus it may not meet the high-performance requirement in an instant-search system. 

B. Using Early Termination 

To solve this problem, Li et al. [4] developed a technique that can find the most relevant answers without generating all the candidate 

answers. In this approach, the inverted list of a keyword is ordered based on the relevancy of the keyword to the records on the list. 

This order guarantees that more relevant records for a keyword are processed earlier. This technique maintains a heap for each 

keyword w to partially compute the union of the inverted lists for w’s similar keywords ordered by relevancy. By processing one 

record at a time, it aggregates the relevancy score of each keyword with respect to the record using a monotonic ranking function. For 

example, we can use a variant of Okapi BM25F as a monotonic ranking function, which is enhanced by considering a similarity based 

on edit distance. This technique works for many top-k algorithms. For instance, we can use the well-known top-k query processing 

TABLE I. EXAMPLE DATA OF MEDICAL PUBLICATIONS. THE TEXT IN BOLD REPRESENTS THE INDEXED 

PHRASES 

. 

Record 

ID 

Title Authors 

r1  

Royal Brompton Hospital challenges decision to close its heart surgery unit. 

Clare 

Dyer 

r2  , ... 

r3 

. 

 

r4 . , ... 

r5 . , ... 

r6 Comment on the ―update on blood conservation for cardiac surgery‖. James 

Hart, 

... 
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algorithm called the Threshold Algorithm [21] to determine when to terminate the computation. In particular, we can traverse the 

inverted lists and terminate the traversal once we are guaranteed that the top-k answers are among those records we have visited. The 

way the lists are sorted and the monotonicity property of the ranking function allow us to do this early termination, which can 

significantly improve the Search performance and allow us to meet the high-speed requirement in instant search. However, this 

approach does not consider the proximity in ranking due to the monotonicity requirement of the ranking function. 

C. Using Term-Pair Index 

In order to support term proximity ranking in top-k query processing, [6] introduces an additional term-pair index, which contains all 

the term pairs within a window size w in a document along with their proximity information. For example, for w = 2, the term-pair 

(t1,t2) is indexed if a document contains ―t1 t2‖, ―t1 tx t2‖, or ―t1 tx ty t2‖. It is clear that the number of term pairs for the window size w can 

be   

. Therefore, as the window size increases, the number of additional term pairs will increase quadratically. The authors 

also propose techniques to reduce index size while not affecting retrieval performance much. One of the proposed techniques is not 

creating a term-pair list for a pair if both terms are very rare. The intuition behind this strategy is that the search engine does not need 

too much time to process both terms even if there is no term-pair list since inverted lists of these terms are relatively short compared to 

those of other terms. 

Given a query q = ht1,t2i, if the index contains the pairs (t1,t2) or (t2,t1), their inverted lists are processed, their relevancy scores are 

computed based on the linear combination of content-based score and the proximity score, and the temporary top-k answer list is 

maintained. Then the topk answer computation continues with the inverted lists of single keywords t 1 and t2. Since the answers 

computed in the first step have high proximity scores, the early termination condition can be quickly satisfied in the second step. 

We can adapt the approach in [6] into instant-fuzzy search, specifically to the approach described in III-B as follows. First, we insert 

the term pairs based on the specified window size w to the index as phrases. Therefore, the trie structure contains the phrase ―t1 t2‖ for 

the term pair (t1,t2). When computing top-k results for a query q = ht1,t2i, first we find the phrases similar to ―t1 t2‖ and ―t2 t1‖, and 

retrieve their inverted lists. Then we continue with the normal top-k computation for separate keywords t1 and t2. The main limitation 

of this approach is that it only support two-keyword queries, and does not work if the query has more than two keywords. 

IV. PHRASE-BASED INDEXING AND LIFE-CYCLE OF A QUERY 

To overcome the limitations of the basic approaches, we develop a technique based on phrase-based indexing.  

A. Phrase-Based Indexing 

Intuitively, a phrase is a sequence of keywords that has high probability to appear in the records and queries. We study how to utilize 

phrase matching to improve ranking in this top-k computation framework. We assume an answer having a matching phrase in the 

query has a higher score than an answer without such a matching phrase. To be able to still do early termination, we want to access the 

records containing phrases first. For instance, for the query q = hheart,surgeryi, we want to access the records containing the phrase 

―heart surgery‖ before the records containing ―heart‖ and ―surgery‖ separately. Notice that the framework sorts the inverted list of a 

keyword based on relevancy of its records to the keyword. If we order the inverted list of the keyword ―surgery‖ based on the 

relevancy to the phrase ―heart surgery‖, the best processing order for another phrase, say, ―plastic surgery‖, may be different. 

Based on this analysis, we need to index phrases to be able to retrieve the records containing these phrases efficiently. However, the 

number of phrases up to a certain length in the data set can be much larger than the number of unique words [29]. Therefore, indexing 

all the possible phrases can require a large amount of space [5]. To reduce the space overhead we need to identify and index those 

phrases that are more likely to be searched. We consider a set of important phrases E that are likely to be searched for indexing, where 

each phrase appears in records of R. The set E can be determined in various ways such as person names, points of interest, and popular 

n-grams in R. Examples include Michael Jackson, New York City, and Hewlett Packard. Let W be the set of all distinct words in R. 

We will refer the set W ∪ E as the dictionary D, and call each item t ∈ D a term. In Table I, the indexed phrases are shown in bold. 

Figure 2 shows the index structures for the sample data in Table I. For instance, the phrase ―heart surgery unit‖ is indexed in the trie in 

Figure 2(a), in addition to the keywords ―heart‖, ―surgery‖, and ―unit‖. The leaf nodes corresponding to these terms are numbered as 
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5, 3, 11, and 12, respectively. The leaf node for the term ―heart‖ points to its inverted list that contains the records r1, r3, and r4. In 

addition, Figure 2(b) shows the forward index, where the keyword id 3 for the term ―heart‖ is stored for these records. 

B. Life Cycle of a Query 

To deal with a large data set that cannot be indexed by a single machine, we assume the data is partitioned into multiple shards to 

ensure the scalability. Each server builds the index structures on its own data shard, and is responsible for finding the answers to a 

query in its shard. The Broker on the Web server receives a query for each keystroke of a user. The Broker is responsible for sending 

the requests to multiple search servers, retrieving and combining the results from them, and returning the answers back to the user. 

Figure 3 shows the query flow in a server for one shard. When a search server receives a request, it first identifies all the phrases in the 

query that are in the dictionary D, and intersects their inverted lists. For this purpose, we have a module called Phrase Validator that 

identifies the phrases (called ―valid phrases‖) in the query q that are similar to a term in the dictionary D. For example, for the query q 

= hheart,surgeryi, ―heart‖ is a valid phrase for the data set in Table I, since the dictionary contains the similar terms ―heart‖ and ―hart‖. 

In addition, ―surgery‖ and ―heart surgery‖ are also valid phrases. To identify all the valid phrases in a query, the Phrase Validator uses 

the trie-based algorithm in [14], which can compute all the similar terms to a complete or prefix term efficiently. The Phrase Validator 

computes and returns the active nodes for all these terms, i.e., 

 

Fig. 2. Index structures. 

those trie nodes whose string corresponding to the path from the root to this node is similar to the query phrase. 
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Fig. 3. Server architecture of instant-fuzzy search. 

If a query keyword appears in multiple valid phrases, the query can be segmented into phrases in different ways After identifying the 

valid phrases, the Query Plan Builder generates a Query Plan Q, which contains all the possible valid segmentations in a specific 

order. The ranking of Q determines the order in which the segmentations will be executed. After Q is generated, the segmentations are 

passed into the Index Searcher one by one until the top-k answers are computed, or all the segmentations in the plan are used. The 

Index Searcher uses the algorithm described in [4] to compute the answers to a segmentation. A result set is then created by combining 

the result sets of the segmentations of Q. 

The rest of the paper is organized as follows. In Section V we study how to identify valid phrases in a query, and present an algorithm 

to do the computation incrementally. In Section VI we explain how a query is segmented based on the computed valid phrases and 

how these segmentations are ranked to generate a query plan. We present our experimental results in Section VII and conclude in 

Section VIII. 

V. COMPUTING VALID PHRASES IN A QUERY 

In this section we study how to efficiently compute the valid phrases in an instant-search query, i.e., those phrases that match the terms 

in the dictionary D extracted from the data set. We first give a basic approach that computes the valid phrases from scratch, then 

develop an efficient algorithm for doing incremental computation using the valid phrases of previous queries. 

A. Basic Approach 

A query with l keywords can be segmented into m phrases in  different ways, because there are l − 1 places to choose for m − 1 

separators to obtain m phrases. Therefore, the total number of possible segmentations,   2l−1, grows exponentially as the 

number of query keywords increases. Fortunately, the typical number of keywords in a search query is not large. For instance, in Web 

search it is between 2 and 4 [30]. Moreover, we do not need to consider all possible segmentations since some of them are not valid. A 

segmentation can produce an answer to a query only if each phrase of the segmentation is a valid phrase, i.e., it is similar (possibly as 

a prefix) to a term in D, we only need to consider the valid phrases and segmentations that consist of these phrases. 

The trie also allows incremental validation for phrases with the same prefix. To exploit this property, we need to validate the phrases 

in a specific order. Specifically, for a query q = hw 1,w2,...,wli, for each keyword w i, we traverse the trie to find the prefixes similar to 

a phrase starting with w i. To check all the phrases starting with w i, the keywords wi+1,wi+2,...,wl are added incrementally during the 

traversal. The traversal is stopped either when all the keywords after w i are added or when the obtained active-node set is empty. In 

the latter case, the phrases with more keywords will also have an empty active-node set.  

B. Incremental Computation of Valid Phrases 

we study how to incrementally compute the valid phrases of a query qj using the cached valid phrases of a previous query q i. The 

valid phrases of q i are cached to be used for later queries that start with the keywords of q i. 

Figure 4 shows the active nodes of the valid phrases in the queries q1 = hheart,surgei, q2 = hheart,surgeryi, and q3 = 

hheart,surgery,uniti. In the figure, q1 and q2 have the same active nodes n1 and n2 for the phrase ―heart‖. Moreover, the phrase 

―surgery‖ in q2 has an active node n5, which is close to the active node n3 of phrase ―surge‖ in q1. Similarly, the phrase ―heart surgery‖ 

Phrase  
Validator  

Index Searcher 

Cache  
Query Plan  

Builder  
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Phrases  
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Forward  
Index  

Indices  
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Index  
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in q2 has an active node n6, which is close to the active node n4 of phrase ―heart surge‖ in q1. Hence, we can use the active nodes n3 and 

n4 to compute n5 and n6 efficiently. The key observation in this example is that the computation is needed only for the phrases 

containing the last query keyword. 

If a query qj extends a query qi by appending additional characters to the last keyword wl of qi, then each valid phrase of qi that ends 

with a keyword other than wl is also a valid phrase of qj. The valid phrases of qi that end with the keyword wl have to be extended to be 

valid phrases of qj. The new active-node set can be computed by starting from the activenode set of the cached phrase, and traversing 

the trie for the additional characters to determine if the phrase is still valid. 

 

Fig. 4. Active nodes for valid phrases. 

Another case where we can use the cached results of the query qi is when the query qj has additional keywords after the last keyword 

wl of qi. The queries q2 and q3 in Figure 4 are an example of this case. In this example, all the active nodes of q2 (i.e., n1, n2, n5, and n6) 

are also active nodes for q3. In addition to these active nodes, q3 has the active nodes n7 and n8 for the phrases that contain the 

additional keyword ―unit‖ (i.e., ―unit‖ and ―heart surgery unit‖). The phrase ―unit‖ is a new phrase, and its active node (n7) is 

computed from scratch. However, the phrase ―heart surgery unit‖ has a phrase from q2 as a prefix, and its active node n8 can be 

computed incrementally starting from n6. As seen in the example, if the query qj has additional keywords after the last keyword wl of 

qi, then all of the valid phrases of qi are also valid in qj. Moreover, some of the valid phrases of qi that end at wl can be extended to 

become valid phrases of qj. If a phrase starting with the mth keyword of qi, wm (m ≤ l), can be extended to a phrase containing the nth 

keyword of qj, wn (l < n), the phrase wm ...wn can be computed by using the valid phrase wm ...wl of qi. 

Based on these observations, we cache a vector of valid phrases Vi for a query qi with the following properties: (1) Vi has an element 

for each keyword in qi, i.e., |Vi| = l; (2) The nth element in Vi is a set of starting points of the valid phrases that end with the keyword wn 

and their corresponding active-node sets. 

Figure 5 shows the vectors of valid phrases V1, V2, and V3 for the queries q1, q2, and q3, respectively.  

We develop an algorithm for computing the valid phrases of a query incrementally using previously cached vector of valid phrases. 

The pseudo code is shown in Algorithm 1. As 

q1=< heart,surge > 

……  

h 

 surge 

…… surge 

n 6 

eart art 

n 1 n 2 

n 5 

ry 

ry 

unit 

 unit 

n 3 

n 4  

n 7 

n 8 

Active node for 
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1 > = <heart, surge 
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q 2 
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Fig. 5. Computing valid phrases incrementally using cached valid phrases of previous queries. 

an example, Figure 5 shows how a cached valid-phrase vector is used for incremental computation. Assuming V1 in the figure is stored 

in the cache, vector V2 can be incrementally computed using V1 as follows. First, the first element of V1 is copied to V2, because q1 and 

q2 share the same first keyword (lines 4 – 5). Then, the second element of V2 is computed incrementally starting from the active-node 

sets S2,2 and S1,2 in the second element of V1 (lines 8–14). The incremental computation from V2 to V3 is an example case where there 

are additional keywords in the new query. In this case, we copy the first two elements of V2 to V3 since the queries share their first two 

keywords. We compute the third element of V3 based on the active-node sets of the second element of V2 (lines 15–21). In particular, 

we traverse the trie starting from nodes n5 and n6 to see if it contains a term prefix similar to ―surgery unit‖ or ―heart surgery unit’, 

respectively. The traversal results in no active node for n5 and the active node n8 for n6. Thus we add the pair (1, S1, 3= {n8}) to the 

third element of V3, indicating that there is a valid phrase starting from the 1st keyword and ending at the 3rd keyword. We also add an 

element (3, S3, 3= {n7}) for the 3rd keyword ―unit‖ since it is also a valid phrase with an active node n7 (lines 22–30). 

VI. GENERATING EFFICIENT QUERY PLANS 

As explained in Section IV, the Phrase Validator computes the valid phrases in a query using the techniques described in Section V, 

and passes the valid-phrase vector to the Query Plan Builder. In this section, we study how the Query Plan Builder generates and ranks 

valid segmentations. 

A. Generating Valid Segmentations 

After receiving a list of valid phrases, the Query Plan Builder computes the valid segmentations. The basic segmentation is the one 

where each keyword is treated as a phrase.. Table II shows all possible segmentations that can be generated from the valid phrases 

vector V3 in Figure 5. 

 

 

Algorithm 1: ComputeValidPhrases(q,C) 

Input : query q = hw1,w2,...,wli where wi is a keyword; a cache module C; Output: a valid-phrase vector V ; 

1 (qc,Vc) ← FindLongestCachedPrefix(q, C) 

2 m ← number of keywords in qc 
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We develop a divide-and-conquer algorithm for generating all the segmentations from the valid-phrase vector V . Each phrase has a 

start position and an end position in the query. The start position is stored in V [end] along with its computed active-node set. If there 

is a segmentation for the query hw1,...,wstart−1i, we can append the phrase [start, end] to it to obtain a segmentation for the query 

hw1,...,wendi. Therefore, to compute all the segmentations for the first j keywords, we can compute all the segmentations for the first i − 

1 keywords, where (i,Si,j) ∈ V [j], and append the 

TABLE II. THREE SEGMENTATIONS FOR QUERY q = hheart,surgery,uniti. 

1. ―heart surgery unit‖ 

2. ―heart surgery | unit‖ 

3. ―heart | surgery | unit‖ 
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phrase [i,j] to each of these segmentations to form new segmentations. This analysis helps us reduce the problem of generating 

segmentations for the query hw1,...,wli to solving the sub problems of generating segmentations for each query hw1,...,wi−1i, where 

(i,Si,l) ∈ V [l]. Hence, the final segmentations can be computed by starting the computation from the last element of V . Algorithm 2 

shows the recursive algorithm. Line 3 is the base case for the recursion, where the start position of the current phrase is the beginning 

of the query. We can convert this recursive algorithm into a top down dynamic programming algorithm by memorizing all the 

computed results for each end position. 

Algorithm 2: Generate Segmentations (q,V,end) 

Input : a query with a list of keywords q = {w 1,w2,...,wl}; its valid-phrase vector V ; a keyword position end (end ≤ 
l) ; 

Output: a vector Pend of all valid segmentations of w1,w2,...,wend 

1 Pend ← ∅ 

 

B. Ranking Segmentations 

Each generated segmentation corresponds to a way of accessing the indexes to compute its answers. The Query Plan Builder needs to 

rank these segmentations to decide the final query plan, which is an order of segmentations to be executed. We can run these 

segmentations one by one until we find enough answers (i.e., k results). Thus, the ranking needs to guarantee that the answers to a 

high-rank segmentation are more relevant than the answers to a low-rank segmentation. There are different methods to rank a 

segmentation. Our segmentation ranking relies on a segmentation comparator to decide the final order of the segmentations. This 

comparator compares two segmentations at a time based on the following features and decides which segmentation has a higher 

ranking: (1) The summation of the minimum edit distance between each valid phrase in the segmentation and its active nodes; (2) The 

number of phrases in the segmentation. The comparator ranks the segmentation that has the smaller minimum edit distance summation 

higher. If two segmentations have the same total minimum edit distance, then it ranks the segmentation with fewer segments higher. 

As an example, for the query q = hhart,surgeryi, consider the segmentation ―hart | surgery‖ with two valid phrases. Each of them has 

an exact match in the dictionary D, so its summation of minimum edit distances is 0.. Using this method, we would rank the first 

segmentation higher due to its small total edit distance. If two segmentations have the same total minimum edit distance, then we can 

rank the segmentation with fewer segments higher. When there are fewer phrases in a segmentation, the number of keywords in a 

phrase increases.  

VII. CONCLUSIONS 

In this paper we studied how to improve ranking of an instant-fuzzy search system by considering proximity information when we 

need to compute top-k answers. We studied how to adapt existing solutions to solve this problem, including computing all answers, 

doing early termination, and indexing term pairs. We proposed a technique to index important phrases to avoid the large space 

overhead of indexing all word grams. We presented an incremental-computation algorithm for finding the indexed phrases in a query 

efficiently, and studied how to compute and rank the segmentations consisting of the indexed phrases.  

 

2 foreach ( start,S start,end ) in V [ end ] do  
3 if start == 1 then //  Base  Case  
4 P end  NP end  ᷾h w start ...w end i  

5 else  
6 foreach seg in  

GenerateSegmentations(  - 1 V, start q, )  
do  

7 seg  Nseg h | w start ...w end i  
8 P end  NP end  ᷾seg  

9 return P end  
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